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AI–nano-driven surface-enhanced Raman 
spectroscopy for marketable technologies
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The 50th anniversary of its discovery 
underscores surface-enhanced Raman 
spectroscopy (SERS) as one of the oldest 
and most dynamic branches of nanoscience 
and nanotechnology. The time has come 
for nanostructure-based SERS to integrate 
artificial intelligence (AI) tools and overcome 
current commercialization challenges.

Fifty years ago, the groundbreaking research conducted by Fleis-
chmann, Hendra, and McQuillan at the University of Southampton 
set the stage for the emergence of surface-enhanced Raman spec-
troscopy (SERS)1. Their paper on exceptionally high-quality surface 
Raman spectra immediately captured the attention of Van Duyne and 
Jeanmaire from Northwestern University, who meticulously replicated 
and scrutinized the findings. Subsequently, they unveiled a remark-
able surface enhancement effect of ~105–106 times2, challenging the 
established principles of Raman spectroscopy.

This discovery sparked immense interest within the scientific 
community, fuelling a surge of enthusiasm to unravel the unexpected 
enhancement and explore the analytical potential of SERS, particu-
larly its exceptional surface sensitivity. However, this wave of excite-
ment was tempered by the realization that the enhancement heavily 
relied on nanostructures (the term ‘nano’ was not yet in use at that 
time) consisting of free-electron metals with poorly characterized and 
hard-to-control morphologies. The limited material generality and lack 
of control significantly impeded the progress of SERS from the 1980s 
to the mid-1990s, resulting in a decline in the number of publications 
on SERS compared to traditional Raman spectroscopy.

The resurgence of SERS went hand-in-hand with advancements in 
nanotechnology in the 1990s, marking a new era for SERS. Significant 
milestones were achieved, such as the first experimental correlation 
of the SERS effect with nanoparticle size in 1995, the demonstration 
of single-molecule sensitivity in 1997, the invention of tip-enhanced 
Raman spectroscopy (TERS) in 2000 and later the demonstration 
of sub-nanometre and even single-bond TERS. The development of 
shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) 
in 2010 broadened the materials and morphology generality of SERS. 
The demonstration of femtosecond SERS in 2011 provided valuable 
insights into molecular dynamics at nanoparticle surfaces. With these 
advancements, SERS solidified its position as one of the cornerstones of 
nanoscience and nanotechnology, with 4,000 publications annually3,4.

Despite these outstanding accomplishments in fundamental 
research, the transition into commercially viable techniques has been 
surprisingly sluggish. This trend is unexpected considering the numer-
ous advantages SERS offers, such as high sensitivity and high spectral, 

spatial, and temporal resolutions. The first commercial SERS company, 
Nanoplex Technologies Inc., was established by Michael Natan in 2002. 
Despite over two decades of commercialization development, also 
by several other companies, the global market value of SERS remains 
relatively modest at US$150 million in 2023, with a projected annual 
growth rate of less than 8%. The divergence between the explosive 
growth in fundamental studies and translation in commercial prod-
ucts is due to the differing priorities in these two realms: commercial 
applications prioritize practical and complex analyte analysis over 
extreme sensitivity. As illustrated in Fig. 1, fundamental research often 
focuses on simplified, single-species or standard resonant molecules. 
In contrast, commercialization efforts must tackle the complex task of 
detecting and differentiating multiple molecular species (often in the 
tens) in real-world samples like food and blood, while also accounting 
for intricate intermolecular interactions present in these systems.

To expedite the adoption of SERS as a commercially versatile 
analytical tool, it is essential to make further advancements in materi-
als stability, versatility, and measurement reliability. (Note that these 
developmental bottlenecks may not be specific to SERS alone but are 
common challenges faced by many other nanotechniques.)

Nano-driven SERS
Essentially, SERS is characterized by a tripartite interaction involv-
ing photons, molecules, and nanostructures5. As a result, it inherits 
both the advantages and drawbacks of nanotechnology. For instance, 
SERS leverages the substantial local electric field enhancement pro-
duced by plasmon resonance in metallic nanostructures, facilitating a 
single-molecule-level detection limit. However, such enhancement is 
limited to specific metal nanostructures, resulting in restricted material 
and morphological versatility3. Moreover, these nanostructured met-
als are intrinsically unstable due to the high surface energy, critically 
impacting the reproducibility and reliability of SERS measurements.

Stability plays a crucial role in determining the commercial success 
of numerous nanostructure-based products, and SERS/TERS/SHINERS 
active materials are not immune from this issue. Free-electron metal 
nanostructures can offer the highest enhancement in SERS, but at room 
temperature the high mobility of atoms can lead to nanoscale recon-
structions on the metal surface4. Additionally, the mobility of analyte 
molecules on such surfaces makes it difficult to accurately characterize 
and control the surface structure of nanostructures. This structural 
instability is further exacerbated under laser illumination due to local 
heating effects, resulting in fluctuations in the SERS spectral intensity, 
a phenomenon known as signal ‘blinking’. The removal of a single atom 
from a surface within the hotspot with a 1 nm gap can lead to a change in 
signal intensity from one to two orders of magnitude. The relationship 
between nano-structural stability and sensitivity in SERS can be roughly 
described using a sort of uncertainty principle by which “the greater 
the enhancement, the less it is possible to know about the atomic-level 
detail of the substructures involved”6.
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great opportunity for the SERS community will be to integrate suitable 
SERS substrates with portable Raman instruments that can replace 
laboratory spectrometers for rapid on-site detection. Although min-
iaturization inevitably leads to compromised resolution and limited 
detection sensitivity, fabricating on-chip Raman spectrometers, with 
the possibility of incorporating SERS into personal user terminals, 
such as smartphones, remains a goal for commercialization of the 
SERS technique.

AI-assisted SERS
In the current nano-driven SERS research paradigm, breakthroughs 
rely on symbiosis between simulations and experimental approaches. 
However, the gap between these two methodologies still presents sig-
nificant obstacles. As shown in Fig. 2a, the current workflow involves 
designing optimized nanostructures with numerical simulations, which 
set parameters based on empirical knowledge to predict SERS perfor-
mance. This approach is often inefficient and costly, with unclear con-
nections between optical responsiveness and synthesis parameters, 
especially when atomic-level precision control of the nanostructure 
is required. Consequently, development still heavily depends on 
experimental trial and error. Furthermore, interpreting spectrum–
structure correlations in complex environments is challenging due 
to intricate molecule–nanostructure interactions, which typically 
alter SERS spectra in multiple ways, thereby affecting the reliability 
of SERS analysis. Given these bottlenecks, recent advancements in 
artificial intelligence (AI) should be leveraged. These AI advancements 
could address challenges in both the fundamental understanding and 
marketability of SERS.

We categorize AI-assisted nano-driven SERS research into 
three aspects: nanostructure guiding, acquisition optimization and  
spectrum–structure correlation (Fig. 2b). The scientific database for 
AI models can be established by compiling various types of data from 
high-precision experimental measurements (including spectroscopy,  
and scanning electron microscopy), high-throughput theoretical 

Another aspect to consider in SERS is storage stability. Commer-
cialization often requires nanostructures to have a long shelf life of 
around two years, while maintaining high reproducibility. However, 
SERS nanoparticles are thermodynamically unstable and susceptible 
to aggregation, contamination, and degradation in ambient environ-
ments, which typically limits their lifespan to a few weeks. To extend 
storage stability, the surface of these nanostructures are usually 
modified with protective ligands or functional groups5. However, 
the presence of these ligands can occupy surface adsorption sites, 
resulting in a reduction in detection sensitivity and selectivity for ana-
lytes. Shell-isolated nanoparticles (SHINs)7 is a promising approach to 
enhancing stability and applicability due to the chemically and electri-
cally inert shells of the nanoparticles. However, this increased stability 
often comes at the cost of reduced sensitivity, as thicker shells result 
in a weaker SERS signal. To maintain sufficient detection sensitivity, 
the dielectric shell used in SHINs should be about 2-nm thick. At this 
thickness, it becomes challenging to maintain a defect-free struc-
ture and ensure stability over extended periods of several months to 
years. This trade-off still presents a significant challenge for industry 
professionals.

Currently, most SERS-detectable analytes are strong adsorbates 
with large Raman scattering cross-sections. It is desirable to expand 
the reliability of SERS detection to include weakly adsorbed molecules5 
and various material surfaces and interfaces.

Additionally, reliable and reproducible SERS signals rely on estab-
lishing standard protocols for sample pretreatment, measurement, 
and analysis procedures tailored to a variety of practical scenarios4,5. 
To achieve this, the academic and industrial research communities 
should come together and carry out intra-batch and inter-batch uni-
formity studies.

Marketable technology also hinges on addressing cost-related 
considerations. Various practical scenarios require on-site detection 
of analytes. For food safety, point of care testing, and environmental 
monitoring, traditional laboratory spectrometers are impractical. A 
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Fig. 1 | Since its discovery, SERS has developed along three different 
directions, each with its own focus, priority, and bottlenecks. a, Research 
toward spectroscopic fundamentals aims to achieve ultimate sensitivity and 
resolution using idealized conditions like low temperatures and resonant 
molecules. These conditions, however, may not be practical for all applications 
and are often limited to specific molecules or a few 2D materials as the substrates. 
b, General applications seek to integrate SERS across various scientific fields 
by exploring diverse substrates, morphologies, and molecular generality, 
including widely used non-resonant molecules. The main technical challenge 

lies in adapting SERS to a broad range of experimental setups and conditions. 
c, Commercial and market applications focus on complex analyses (such as 
proteins, viruses, food additives, and so on) and environments encountered 
in real-world applications, which prioritize to managing the intricate interplay 
among molecules, photons, and nanostructures within real systems. Ensuring 
spectral signal consistency and stability is crucial for successful market 
integration and widespread adoption, requiring the development of reliable, 
consistency, reproducible, and cost-effective solutions.
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Fig. 2 | From nano-driven SERS to AI-assisted and AI–nano-driven SERS 
research paradigms. a, The workflow of nano-driven SERS research. Close 
collaboration between experiment and theory is essential throughout all stages 
of these procedures. Listed are typical parameters that significantly influence the 
outcomes of both experiments and calculations, which are generally determined 
by prior knowledge and experience. However, the connection between 
experimental parameters and theoretical ones is vague, as indicated by the 
dashed arrows. b, The workflows of AI-assisted nano-driven SERS and AI–nano-
driven SERS. In AI-assisted nano-driven SERS, the trained AI model improves 

efficiency and accuracy either in nanostructure design and manufacture, 
instrument optimization, or spectral interpretation. AI–nano-driven SERS is 
proposed to integrate those modules together to form a self-driven closed loop. 
It achieves real-time on-site feedback from the final interpreted results to guide 
nanostructure manufacturing and instrumentation adjustments, as indicated 
by the red arrows. The newly generated data within the loop is essential for self-
optimization. c, Two typical AI–nano-driven SERS-enabled market applications 
include intelligent research instruments for scientific research (left) and 
miniaturized smart devices for personal users (right).
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calculations (such as optical property simulations, and DFT calcula-
tions), and extensive literature mining8.

AI-assisted nanostructure guiding mainly consists of three cor-
related components: manufacturing condition, structural model and 
plasmonic response prediction. Pre-trained AI models can quantita-
tively establish complex high-dimensional correlations between these 
components (Fig. 2b, part i). This enables inverse design methods of the 
desired plasmonic response to avoid the trial-and-error approach of 
conventional workflows9, reducing both the time and cost associated 
with SERS nanostructure preparation. Additionally, AI-assisted guid-
ing can predict novel SERS nanostructures that would not have been 
otherwise explored. The consistency of SERS nanostructures can also 
be improved by utilizing AI-guided automated manufacturing, such as 
robotic AI-chemist systems8,10.

The AI-assisted acquisition optimization process (Fig. 2b, part ii)  
includes instrument adjustment, acquisition parameters and 
enhanced signals or images. The process enables suppression of 
instrumental noise, and extraction of meaningful signals from low 
signal-to-noise-ratio data, thereby improving detection limits. For 
example, integrating image recognition algorithms with automated 
instrument control and feedback can efficiently locate nanostructures 
of interest, perform data acquisition, and obtain high-throughput 
standardized experimental data11, thereby reducing fluctuations in 
SERS spectra. Through data augmentation, it is possible to restore 
and extract spectral features from low-quality and low-resolution 
spectra or images12, relaxing restrictions on detection sensitivity or 
resolution. For example, fully opening the entrance slit of a Raman 
spectrometer traditionally increases signal throughput at the cost 
of energy resolution. However, integrating AI algorithms can accu-
rately restore energy resolution, facilitating an improvement in the 
signal-to-noise ratio13. This is particularly crucial for miniaturized 
Raman devices. With the improved spectral sensitivity achieved by 
integrating AI, more inert and stable SERS nanostructures could be 
employed in practical applications.

AI-assisted spectrum–structure correlation (Fig. 2b, part iii) 
comprises library matching, spectrum classification and spectrum 
interpretation. A well-trained AI model can offer rapid spectral data 
processing, analysis, interpretation, and extraction of hidden patterns 
and correlations in massive datasets. As a result, an accurate prediction 
of molecular structures from spectra14 can be realized based on the pat-
terns recognized in the trained dataset. This is particularly beneficial for 
the rapid detection and quantification of trace species, and subsequent 
expert-free decision-making, in point-of-care (POC) detection scenarios.

AI–nano-driven SERS
It should be emphasized that in the current landscape of AI-assisted 
nano-driven SERS research, efforts have primarily concentrated on 
these three individual modules independently, showing some potential 
to address issues of stability, consistency, and sensitivity. We anticipate 
a synergistic approach that integrates these sub-functional modules 
into a seamless, self-driven, closed-loop process (red arrows in Fig. 2b) 
for continuous optimization, which we term AI–nano-driven SERS.

In AI–nano-driven SERS, the key distinguishing feature from 
previous AI-assisted approaches is the continuous data exchange 
and generation process within the loop (indicated by red arrows). 
Initially, starting from the desired spectral response, suitable SERS 
materials are inversely designed and then automatically synthesized 
by a higher-level robotic system. Both the synthesized materials 
and corresponding data are transmitted to the spectral acquisition 

module, where the instrument automatically adjusts the optical path 
and optimizes the measurement conditions to obtain high-quality 
spectra based on the transmitted synthesized data. The data analysis 
module rapidly establishes spectrum–structure correlations that 
are utilized by the central AI module for decision making, on-site 
feedback and synergistic optimization. The central AI module adjusts 
the working conditions of the analyte devices, informs the sample 
preparation and data acquisition modules for further adjustments, 
and initiates another cycle of the loop. The detection sensitivity and 
analysis speed of each sub-functional module determines the flow rate 
of the whole loop; ensuring the efficient operation of each module is 
a pre-condition.

Real-time AI–nano-driven SERS analysis would be particularly 
powerful in industrial scenarios. Taking the example of SERS monitor-
ing of battery failure, real-time analysis of characterization data during 
the operational process would enable immediate adjustments based 
on rapid feedback, leading to optimized device performance. Contrast 
this with the traditional spectroscopic characterization scenario where 
signal acquisition and analysis are done separately, typically requiring 
days to fully process data and draw conclusions, which would then 
inform subsequent experimental cycles.

These AI-driven advancements are poised to reshape the future 
market potential for SERS-based products, which can be broadly divided 
into two main segments (Fig. 2c). The first includes research-grade 
products, designed for intelligent spectroscopic research in labora-
tory settings. The second comprises application-grade products, 
focusing on portable smart devices for field-based or POC use. Both 
segments can greatly benefit from AI–nano-driven SERS techniques 
in terms of enhanced consistency, stability, and applicability. The 
symbiotic relationship between product application and technological 
advancement underscores the potential for rapid progress in the field 
of SERS-based analytics.

The long-term and ultimate goal is to fully leverage the over-
whelming advantage of AI to autonomously learn and evolve the SERS 
methods and techniques. As training parameters and data volume 
reach critical thresholds, large-scale AI models may exhibit emer-
gent capabilities15, potentially leading to the creation of new optical 
materials, structures, and working principles. This approach would be 
distinct from the conventional workflow (Fig. 2a) and would introduce 
unpredictable instrument designs and analytical power.

Our aspiration is for this Comment to ignite a spark in readers 
to embrace AI as an enabling technology for expanding the reach 
of nanostructure-based SERS, towards more commercially viable 
applications.
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